5 research outputs found

    Impacto socioecon贸mico de la emigraci贸n en la econom铆a familiar del municipio de Sebasti谩n de Yal铆 departamento de Jinotega en los a帽os 2021-2022

    Get PDF
    En Nicaragua. La emigraci贸n es un componente importante de la naturaleza humana es un fen贸meno que con el transcurrir de los a帽os, ha ido tomando rumbos altamente complejos. Las direcciones de la emigraci贸n desde sus inicios se han condicionadas por la necesidad de la b煤squeda de recursos, herramientas y lugares propicios para el desarrollo de la vida de los seres humanos es decir por intereses econ贸micos. La metodolog铆a utilizada en esta investigaci贸n es cuantitativa ya que ella vemos elementos te贸rico y estad铆sticos sobre la emigraci贸n y su impacto econ贸mico. Y que nos permite analizar la informaci贸n encontrada en base a los datos. Este traslado por una parte implica no solo cambio en t茅rminos territoriales, sino tambi茅n a nivel social y cultural en este documento se analizar el impacto de la emigraci贸n en las familias en el desarrollo social y econ贸mico en los a帽os 2021 2022; donde se genera un an谩lisis profundo sobre lo que se ve a simple vista y que ha ocasionado ellos a partir de este fen贸meno as铆 mismo este estudio beneficiara no solo a futuros investigadores sino tambi茅n a docentes. Ante esta situaci贸n las autoridades deben desarrollar formas de intervenci贸n para lograr disminuir esta situaci贸n para ayudar a la poblaci贸n del municipio y fortalecer la econom铆a tanto nacional como local

    Impacto socioecon贸mico de la emigraci贸n en la econom铆a familiar en el Municipio de San Sebasti谩n de Yal铆 en el a帽o 2021 - 2022

    Get PDF
    En Nicaragua. La emigraci贸n es un componente importante de la naturaleza humana es un fen贸meno que con el transcurrir de los a帽os, ha ido tomando rumbos altamente complejos. Las direcciones de la emigraci贸n desde sus inicios se han condicionadas por la necesidad de la b煤squeda de recursos, herramientas y lugares propicios para el desarrollo de la vida de los seres humanos es decir por intereses econ贸micos. La metodolog铆a utilizada en esta investigaci贸n es cuantitativa ya que ella vemos elementos te贸rico y estad铆sticos sobre la emigraci贸n y su impacto econ贸mico. Y que nos permite analizar la informaci贸n encontrada en base a los datos. Este traslado por una parte implica no solo cambio en t茅rminos territoriales, sino tambi茅n a nivel social y cultural en este documento se analizar el impacto de la emigraci贸n en las familias en el desarrollo social y econ贸mico en los a帽os 2021 2022; donde se genera un an谩lisis profundo sobre lo que se ve a simple vista y que ha ocasionado ellos a partir de este fen贸meno as铆 mismo este estudio beneficiara no solo a futuros investigadores sino tambi茅n a docentes. Ante esta situaci贸n las autoridades deben desarrollar formas de intervenci贸n para lograr disminuir esta situaci贸n para ayudar a la poblaci贸n del municipio y fortalecer la econom铆a tanto nacional como local

    Paper-based ZnO self-powered sensors and nanogenerators by plasma technology

    Full text link
    Nanogenerators and self-powered nanosensors have shown the potential to power low-consumption electronics and human-machine interfaces, but their practical implementation requires reliable, environmentally friendly and scalable, processes for manufacturing and processing. This article presents a plasma synthesis approach for the fabrication of piezoelectric nanogenerators (PENGs) and self-powered sensors on paper substrates. Polycrystalline ZnO nanocolumnar thin films are deposited by plasma-enhanced chemical vapour deposition on common paper supports using a microwave electron cyclotron resonance reactor working at room temperature yielding high growth rates and low structural and interfacial stresses. Applying Kinetic Monte Carlo simulation, we elucidate the basic shadowing mechanism behind the characteristic microstructure and porosity of the ZnO thin films, relating them to an enhanced piezoelectric response to periodic and random inputs. The piezoelectric devices are assembled by embedding the ZnO films in PMMA and using Au electrodes in two different configurations: laterally and vertically contacted devices. We present the response of the laterally connected devices as a force sensor for low-frequency events with different answers to the applied force depending on the impedance circuit, i.e. load values range, a behaviour that is theoretically analyzed. The vertical devices reach power densities as high as 80 nW/cm2 with a mean power output of 20 nW/cm2. We analyze their actual-scenario performance by activation with a fan and handwriting. Overall, this work demonstrates the advantages of implementing plasma deposition for piezoelectric films to develop robust, flexible, stretchable, and enhanced-performance nanogenerators and self-powered piezoelectric sensors compatible with inexpensive and recyclable supportsComment: 30 pages, 8 figures in main tex

    Paper-based ZnO self-powered sensors and nanogenerators by plasma technology

    No full text
    Nanogenerators and self-powered nanosensors have shown the potential to power low-consumption electronics and human-machine interfaces, but their practical implementation requires reliable, environmentally friendly and scalable processes for manufacturing and processing. Furthermore, the emerging flexible and wearable electronics technology demands direct fabrication onto innovative substrates such as paper and plastics typically incompatible with high process temperatures. This article presents a plasma synthesis approach for the fabrication of piezoelectric nanogenerators (PENGs) and self-powered sensors on paper substrates. Polycrystalline ZnO nanocolumnar thin films are deposited by plasma-enhanced chemical vapour deposition on common paper supports using a microwave electron cyclotron resonance reactor working at room temperature yielding high growth rates and low structural and interfacial stresses. Applying Kinetic Monte Carlo simulation, we elucidate the basic shadowing mechanism behind the characteristic microstructure and porosity of the ZnO thin films, relating them to an enhanced piezoelectric response to periodic and random inputs. The piezoelectric devices are assembled by embedding the ZnO films in polymethylmethacrylate (PMMA) and using Au thin layers as electrodes in two different configurations, namely laterally and vertically contacted devices. We present the response of the laterally connected devices as a force sensor for low-frequency events with different answers to the applied force depending on the impedance circuit, i.e. load values range, a behaviour that is theoretically analyzed. The characterization of the vertical devices in cantilever-like mode reaches instantaneous power densities of 80 nW/cm2 with a mean power output of 20 nW/cm2. Besides, we analyze their actual-scenario performance by activation with a fan and handwriting. Overall, this work demonstrates the advantages of implementing plasma deposition for piezoelectric films to develop robust, flexible, stretchable, and enhanced-performance nanogenerators and self-powered piezoelectric sensors compatible with inexpensive and recyclable supports.</p

    Paper-based ZnO self-powered sensors and nanogenerators by plasma technology

    No full text
    Nanogenerators and self-powered nanosensors have shown the potential to power low-consumption electronics and human-machine interfaces, but their practical implementation requires reliable, environmentally friendly and scalable processes for manufacturing and processing. Furthermore, the emerging flexible and wearable electronics technology demands direct fabrication onto innovative substrates such as paper and plastics typically incompatible with high process temperatures. This article presents a plasma synthesis approach for the fabrication of piezoelectric nanogenerators (PENGs) and self-powered sensors on paper substrates. Polycrystalline ZnO nanocolumnar thin films are deposited by plasma-enhanced chemical vapour deposition on common paper supports using a microwave electron cyclotron resonance reactor working at room temperature yielding high growth rates and low structural and interfacial stresses. Applying Kinetic Monte Carlo simulation, we elucidate the basic shadowing mechanism behind the characteristic microstructure and porosity of the ZnO thin films, relating them to an enhanced piezoelectric response to periodic and random inputs. The piezoelectric devices are assembled by embedding the ZnO films in polymethylmethacrylate (PMMA) and using Au thin layers as electrodes in two different configurations, namely laterally and vertically contacted devices. We present the response of the laterally connected devices as a force sensor for low-frequency events with different answers to the applied force depending on the impedance circuit, i.e. load values range, a behaviour that is theoretically analyzed. The characterization of the vertical devices in cantilever-like mode reaches instantaneous power densities of 80 nW/cm2 with a mean power output of 20 nW/cm2. Besides, we analyze their actual-scenario performance by activation with a fan and handwriting. Overall, this work demonstrates the advantages of implementing plasma deposition for piezoelectric films to develop robust, flexible, stretchable, and enhanced-performance nanogenerators and self-powered piezoelectric sensors compatible with inexpensive and recyclable supports
    corecore